Solution. We want to determine the integral of \ln(x)/x:
\begin{align*}
\int \frac{\ln(x)}{x} dx.
\end{align*}\begin{align*}
\int \frac{\ln(x)}{x} dx &= \int u du \\
&= \frac{1}{2}u^2 + C \\
&= \frac{1}{2}\ln^2(x) + C.
\end{align*}
\begin{align*}
\int \frac{\ln(x)}{x} dx.
\end{align*}\begin{align*}
\int \frac{\ln(x)}{x} dx &= \int u du \\
&= \frac{1}{2}u^2 + C \\
&= \frac{1}{2}\ln^2(x) + C.
\end{align*}