You are currently viewing What is the integral of arcsin(x)?
integral of arcsin(x)

What is the integral of arcsin(x)?

The integral of \sin^{-1}(x) is x\sin^{-1}(x) + \sqrt{1 - x^2} + C.

Solution. We want to find the integral of \sin^{-1}(x), i.e.:
\begin{align*}
\int \sin^{-1}(x) dx.
\end{align*}
Firstly, we will apply the method integrating by parts, i.e.:
\begin{align*}
\int UdV = UV - \int VdU,
\end{align*}
where we get the following functions:
\begin{align*}
U = \sin^{-1}(x), \quad &dV = dx\\
dU = \frac{dx}{\sqrt{1 - x^2}}, \quad &V = x.
\end{align*}
The derivative dU can be easily verified here. Now we get the following integral:
\begin{align*}
\int \sin^{-1}(x) dx = x\sin^{-1}(x) - \int \frac{x}{\sqrt{1 - x^2}} dx.
\end{align*}
Secondly and lastly, we will use the substitution method. Let u = 1 - x^2, then du = -2x dx. We get the following:
\begin{align*}
\int \sin^{-1}(x) dx &= x\sin^{-1}(x) - \int \frac{x}{\sqrt{1 - x^2}} dx \\
&= x\sin^{-1}(x) + \frac{1}{2} \int u^{-\frac{1}{2}} du \\
&= x\sin^{-1}(x) + u^{\frac{1}{2}} + C \\
&= x\sin^{-1}(x) + \sqrt{1 - x^2} + C.
\end{align*}
Therefore, the integral of \sin^{-1}(x) is x\sin^{-1}(x) + \sqrt{1 - x^2} + C.

Leave a Reply