Solution. We want to find the integral of \tan^{-1}(x), i.e.:
\begin{align*}
\int \tan^{-1}(x) dx.
\end{align*}\begin{align*}
\int UdV = UV - \int VdU,
\end{align*}\begin{align*}
U = \tan^{-1}(x), \quad &dV = dx\\
dU = \frac{dx}{1 + x^2}, \quad &V = x.
\end{align*}\begin{align*}
\int \tan^{-1}(x) dx = x\tan^{-1}(x) - \int \frac{x}{1 + x^2} dx.
\end{align*}\begin{align*}
\int \tan^{-1}(x) dx &= x\tan^{-1}(x) - \int \frac{x}{1 + x^2} dx \\
&= x\tan^{-1}(x) - \frac{1}{2} \int \frac{1}{u} du \\
&= x\tan^{-1}(x) - \frac{1}{2} \ln\lvert u \rvert + C \\
&= x\tan^{-1}(x) - \frac{1}{2} \ln\lvert 1 + x^2 \rvert + C.
\end{align*}