Proof. Take \phi: G \longrightarrow G and
\begin{align*}
\ker(\phi) = \{a\in G \ | \ \phi(a) = e\},
\end{align*}\begin{align*}
\phi(gag^{-1}) &= \phi(g)\phi(a)\phi(g^{-1}) \quad \text{because kernel is a homomorphism} \\
&= \phi(g)\phi(a)\phi(g)^{-1}\\
&= \phi(g)e\phi(g)^{-1} \\
&= \phi(g)\phi(g)^{-1} \\
&= e.
\end{align*}