Proof. Let F be any field. Recall that the general linear group is defined as:
\begin{align*}
GL_n(F) = \{A \ | \ A \text{ is an } n \times n \text{ invertible matrix with entries from } F\}
\end{align*}\begin{align*}
SL_n(F) = \{A \in GL_n(F) \ | \ det(A) = 1\}.
\end{align*}\begin{align*}
det(A^{-1}) = \frac{1}{det(A)} = \frac{1}{1} = 1.
\end{align*}\begin{align*}
det(AB) = det(A)det(B) = 1.
\end{align*}So SL_n(F) is a subgroup of GL_n(F).