Solution. We need to find out what the integral of \cos(\ln(x)) is, that is:
\begin{align*}
I = \int \cos(\ln(x)) dx.
\end{align*}\begin{align*}
\int UdV = UV - \int VdU.
\end{align*}\begin{align*}
U = \cos(\ln(x)), \quad &dV = dx\\
dU = \frac{-\sin(\ln(x))}{x}dx, \quad &V = x.
\end{align*}\begin{align*}
\int \cos(\ln(x)) dx = x\cos(\ln(x)) + \int \sin(\ln(x))dx.
\end{align*}\begin{align*}
U = \sin(\ln(x)), \quad &dV = dx\\
dU = \frac{\cos(\ln(x))}{x}dx, \quad &V = x.
\end{align*}\begin{align*}
\int \cos(\ln(x)) dx &= x\sin(\ln(x)) + \int \sin(\ln(x))dx \\
&= x\cos(\ln(x)) + x\sin(\ln(x)) - \int \cos(\ln(x))dx \\
&= x\cos(\ln(x)) + x\sin(\ln(x)) - I.
\end{align*}\begin{align*}
\int \cos(\ln(x)) dx = \frac{1}{2}x(\cos(\ln(x)) + \sin(\ln(x))) + C.
\end{align*}