Solution. We want to determine the integral of \cos^3(x), i.e.:
\begin{align*}
\int \cos^3(x) dx.
\end{align*}\begin{align*}
\int \cos^3(x) dx = \int \cos^2(x)\cos(x) dx = \int (1 - \sin^2(x))\cos(x) dx.
\end{align*}\begin{align*}
\int (1 - \sin^2(x))\cos(x) dx &= \int (1 - u^2) du \\
&= u - \frac{1}{3}u^3 + C \\
&= \sin(x) - \frac{1}{3} \sin^3(x) + C.
\end{align*}