Proof. Let f(x) = x and g(x) = \ln(x). We will use the product rule:
\begin{align*}
(f(x)g(x))' = f'(x)g(x) + f(x)g'(x).
\end{align*}\begin{align*}
f'(x) = 1,
\end{align*}\begin{align*}
g'(x) = \frac{1}{x}
\end{align*}\begin{align*}
(f(x)g(x))' &= f'(x)g(x) + f(x)g'(x) \\
&= 1\cdot \ln(x) + x\frac{1}{x}\\
&= \ln(x) + 1.
\end{align*}