Proof. Let F(x) = \log_a^2(x), f(u) = u^2 and g(x) = \log_a(x) such that F(x) = f(g(x)). We will use the chain rule:
\begin{align*}
F'(x) = f'(g(x))g'(x).
\end{align*}\begin{align*}
f'(u) = 2u \quad \text{and} \quad g'(x) = \frac{1}{x\ln(a)}.
\end{align*}\begin{align*}
h'(x) &= f'(g(x))g'(x) \\
&= 2 \cdot \log_a(x) \cdot \frac{1}{x\ln(a)} \\
&= \frac{2\log_a(x)}{x\ln(a)}.
\end{align*}