Using the chain rule, we will prove that the derivative of e^{x^2} is 2xe^{x^2}.
Proof. Let h(x) = e^{x^2}, f(u) = e^u and g(x) = x^2. We will use the chain rule to determine the derivative, i.e.:
\begin{align*}
h'(x) = \frac{d}{dx}f(g(x)) = f'(g(x))g'(x).
\end{align*}\begin{align*}
f'(u) = e^u \quad \text{and} \quad g'(x) = 2x.
\end{align*}\begin{align*}
h'(x) &= f'(g(x))g'(x) \\
&= e^{x^2} \cdot 2x \\
&= 2xe^{x^2}.
\end{align*}