Solution. Let h(x) = e^{\sin(x)}, f(u) = e^u and g(x) = \sin(x). We will use the chain rule:
\begin{align*}
h'(x) = f'(g(x))g'(x).
\end{align*}\begin{align*}
f'(u) = e^u \quad \text{and} \quad g'(x) = \cos(x).
\end{align*}\begin{align*}
h'(x) &= f'(g(x))g'(x) \\
&= e^{\sin(x)}\cos(x) \\
&= \cos(x)e^{\sin(x)}
\end{align*}