Solution. To determine the derivative of \csc^3(x), we will use the chain rule, i.e.:
\begin{align*}
F'(x) = f'(g(x))g'(x),
\end{align*}\begin{align*}
f'(g(x)) = f'(\csc(x)) = 3\csc^2(x) \quad \text{and} \quad g'(x) = -\cot(x)\csc(x).
\end{align*}\begin{align*}
F'(x) &= f'(g(x))g'(x) \\
&= 3\csc^2(x) \cdot (-\cot(x)\csc(x)) \\
&= -3 \cot(x)\csc^3(x).
\end{align*}