Proof. Let F(x) = \cos(2x), f(u) = \cos(u), and g(x) = 2x such that F(x) = f(g(x)). To prove the derivative of \cos(2x), we will use the chain rule:
\begin{align*}
F'(x) = f'(g(x))g'(x).
\end{align*}\begin{align*}
f'(g(x)) = -\sin(g(x)) = \sin(2x) \quad \text{ and } \quad g'(x) = 2.
\end{align*}\begin{align*}
F'(x) &= f'(g(x))g'(x) \\
&= -\sin(2x)\cdot 2 \\
&= -2\sin(2x).
\end{align*}