Solution. We want to determine the integral of \sin^3(x), that is:
\begin{align*}
\int \sin^3(x) dx.
\end{align*}\begin{align*}
\int \sin^3(x) dx = \int \sin^2(x)\sin(x) dx = \int (1 - \cos^2(x))\sin(x) dx.
\end{align*}\begin{align*}
\int (1 - \cos^2(x))\sin(x) dx &= -\int (1 - u^2) du \\
&= -u + \frac{1}{3}u^3 + C \\
&= -\cos(x) + \frac{1}{3} \cos^3(x) + C.
\end{align*}